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One-point functions of the X X Z  model and Ramanujm's 
1pkl sum 
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Department of Mathematics. Kyushu University, Hakozaki, Fuhoka 812 Japan 

Received 26 November I993 

Abstract. We apply Ramanujan's sum in q-analysis to evaluate the one-point functions of the 
XXZ model. 

The XXZ model is reformulated in Davies et a1 (1992 from the viewpoint of the 
representation theory of the quantum &ne algebra UqsZ2. Subsequently, multipoint 
correlation functions of the XXZ model are given in Jimbo et al (1992) by means of 
contour integrals. Although the formulae are explicit, it is not easy to extract information 
from them, even in the case of one-point functions. The aim 'of this paper is to give a 
simple evaluation of one-point functions of the XXZ model by using Ramanujan's 1'4'1 
sum, a fundamental ingredient in q-analysis. 

Throughout this paper, we fix a number q with -1 < q < 0 and use the standard 
notation of q-shifted factorials 

n -- 
(a; dm = n(1 - nqk) and 

Moreover, since products of q-shifted factorials occur so often, we also use the more 
compact notation 

(a; 4). = (a; q)m/(aqn; dm. 
k=O 

(ai, az.. . . , a,; 4)- = (al;  qlm(a2; q)w ... (a,; dm. 
As special cases of the formulae in Jimbo et al (1992), the one-point functions P:(zl; i)  
(E = rt and i = 0,l)  can be described as 
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for i = 0,1, where each integration path is taken in the counterclockwise direction. As it 
is easily seen that PZ(z1li) = P:(zlll - i). we discuss only PI(z1li) (i = 0, 1). 

Jacobi's triple product identity for the theta function 

C(-rl)Xqk'X+1)P = m. I h ,  4; 4)- (1) 
kEZ 

leads to 

with 

where the integration path is also d e n  in the counterclockwise direction. Hence we are 
interested in the evaluation of the integrals G". It is clear that G- = 1. To evaluate the 
integral G+, we recall Ramanujan's 1 q 1  sum. 

Ramanujan's 1Y1 sum can be written as 
m 

(3) 

for IB/al < It1 < 1. It has several simple proofs. We refer the reader to Andrews and 
Askey (1978) and Ismail (1977). It is worth while noting that Jacobi's triple product identity 
(1) can be thought of as a special case of Ramanujan's I Y ~  sum. See Andrews ;1986). 

After the base change q H 4'. set i = qq, ct = -1, B = -q2 in (3). Then we have 

Applying this equality to (2). we obtain the evaluation 

Therefore we have obtained the equalities 

which are the same as those in Jimbo et ai (1992). Consequently we get the desired 
expression for the one-point functions 

Since P++(zlla) = P:(zlll - E ) ,  we also have 

See also Jimbo et al (1993). 
Finally we should give a remark that integral (2) is the same as (2.3) in Askey (1983). 

Although Askey's evaluation is the same as o m ,  it is repeated here for self-containedness. 
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